Definitions and key facts for section 1.3

A matrix with only one column is called a column vector, or simply a vector.
For example,

$$
\mathbf{u}=\left[\begin{array}{c}
1 \\
-1
\end{array}\right], \quad \mathbf{v}=\left[\begin{array}{c}
-1 \\
1
\end{array}\right], \quad \mathbf{b}=\left[\begin{array}{c}
0 \\
6 \\
-3 \\
12
\end{array}\right], \quad \text { and } \mathbf{x}=\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right]
$$

are all (column) vectors. Here we say \mathbf{u} and \mathbf{v} are elements of $\mathbb{R}^{2}, \mathbf{b}$ is an element of \mathbb{R}^{4} and \mathbf{x} is an element of \mathbb{R}^{n}.

A key example of a vector is the zero vector denoted by $\mathbf{0}$. It is the vector whose entries are all zero. For example,

$$
\mathbf{0}=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \text { in } \mathbb{R}^{2}, \quad \mathbf{0}=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] \text { in } \mathbb{R}^{3}, \quad \mathbf{0}=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right] \text { in } \mathbb{R}^{4}, \quad \text { and } \mathbf{0}=\left[\begin{array}{c}
0 \\
0 \\
\vdots \\
0
\end{array}\right] \text { in } \mathbb{R}^{n}
$$

The algebra of vectors: for any two vectors \mathbf{u} and \mathbf{v} in \mathbb{R}^{n}, we say

- \mathbf{u} and \mathbf{v} are equal, written $\mathbf{u}=\mathbf{v}$, if their entries are equal;
- the sum of \mathbf{u} and \mathbf{v} is the vector whose entries are the sum of the entries of \mathbf{u} and \mathbf{v}, written $\mathbf{u}+\mathbf{v}$;
- and the scalar multiple of \mathbf{u} by a scalar c (a real number) is the vector $c \mathbf{u}$ obtaining by multiplying each entry of \mathbf{u} by c.

Algebraic properties of (vectors in) \mathbb{R}^{n}

For all $\mathbf{u}, \mathbf{v}, \mathbf{w} \in \mathbb{R}^{\mathbf{n}}$ and all scalars c and d, the following properties hold:

1. $\mathbf{u}+\mathbf{v}=\mathbf{v}+\mathbf{u}$
2. $c(\mathbf{u}+\mathbf{v})=\mathbf{c u}+\mathbf{c v})$
3. $(\mathbf{u}+\mathbf{v})+\mathbf{w}=\mathbf{u}+(\mathbf{v}+\mathbf{w})$
4. $(c+d) \mathbf{u}=c \mathbf{u}+d \mathbf{u}$
5. $\mathbf{u}+\mathbf{0}=\mathbf{0}+\mathbf{u}=\mathbf{u}$
6. $c(d \mathbf{u})=(c d) \mathbf{u}$
7. $\mathbf{u}+(-\mathbf{u})=-\mathbf{u}+\mathbf{u}=\mathbf{0}$,
where $-\mathbf{u}$ denotes $(-1) \mathbf{u}$
8. $1 \mathbf{u}=\mathbf{u}$

Given vectors $\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}, \ldots, \mathbf{v}_{\mathbf{p}}$ in \mathbb{R}^{n} and given scalars $c_{1}, c_{2}, \ldots, c_{p}$, the vector \mathbf{y} defined

$$
\mathbf{y}=c_{1} \mathbf{v}_{\mathbf{1}}+c_{2} \mathbf{v}_{\mathbf{2}}+\cdots+c_{p} \mathbf{v}_{\mathbf{p}}
$$

is called a linear combination of $\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}, \ldots, \mathbf{v}_{\mathbf{p}}$ with weights $c_{1}, c_{2}, \ldots, c_{p}$.

Fact: Vector equations and linear systems

The vector equation

$$
x_{1} \mathbf{a}_{1}+x_{2} \mathbf{a}_{2}+\cdots+x_{n} \mathbf{a}_{\mathbf{n}}=\mathbf{b}
$$

has the same solution set as the linear system with augmented matrix

$$
\left[\begin{array}{lllll}
a_{1} & a_{2} & \cdots & a_{n} & b
\end{array}\right]
$$

Notice this implies in particular that \mathbf{b} is a linear combination of $\mathbf{a}_{\mathbf{1}}, \mathbf{a}_{\mathbf{2}}, \ldots, \mathbf{a}_{\mathbf{n}}$ exactly when the corresponding system is consistent (and the solution provide the correct weights for the linear combination).
If $\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}, \ldots, \mathbf{v}_{\mathbf{p}}$ are in \mathbb{R}^{n}, the set of all linear combinations of $\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}, \ldots, \mathbf{v}_{\mathbf{p}}$ is called the subset of \mathbb{R}^{n} spanned (or generated) by $\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}, \ldots, \mathbf{v}_{\mathbf{p}}$ or more simply, the span of $\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}, \ldots, \mathbf{v}_{\mathbf{p}}$. We denote this set by $\operatorname{Span}\left\{\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}, \ldots, \mathbf{v}_{\mathbf{p}}\right\}$.

We represent a vector $\mathbf{x}=\left[\begin{array}{c}x_{1} \\ x_{2} \\ \vdots \\ x_{n}\end{array}\right]$ in \mathbb{R}^{n} geometrically in two ways.

- First, as an arrow with initial point at the origin $(0,0, \ldots, 0)$ and terminal point at $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$.
- Secondly, as the point $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$.

Parallelogram rule for addition

If \mathbf{u} and \mathbf{v} in \mathbb{R}^{2} are represented as points in the plane, then $\mathbf{u}+\mathbf{v}$ corresponds to the fourth vortex of the parallelogram whose other vertices are $\mathbf{u}, \mathbf{0}$ and \mathbf{v}.
For example, in \mathbb{R}^{2}, we sketch the sum of $\mathbf{u}=\left[\begin{array}{l}3 \\ 1\end{array}\right]$ and $\mathbf{v}=\left[\begin{array}{l}1 \\ 2\end{array}\right]$

Visualizing scalar multiples

The set of all scalar multiples of a vector \mathbf{u} in \mathbb{R}^{n} is the collection of vectors on the line through $\mathbf{0}$ and \mathbf{u}.
For example, in \mathbb{R}^{2}, we sketch the scalar multiples of $\mathbf{u}=\left[\begin{array}{l}2 \\ 1\end{array}\right]$:

