Definitions and key facts for section 1.3

A matrix with only one column is called a **column vector**, or simply a **vector**. For example,

$$\mathbf{u} = \begin{bmatrix} 1\\ -1 \end{bmatrix}, \quad \mathbf{v} = \begin{bmatrix} -1\\ 1 \end{bmatrix}, \quad \mathbf{b} = \begin{bmatrix} 0\\ 6\\ -3\\ 12 \end{bmatrix}, \quad \text{and } \mathbf{x} = \begin{bmatrix} x_1\\ x_2\\ \vdots\\ x_n \end{bmatrix}.$$

are all (column) vectors. Here we say \mathbf{u} and \mathbf{v} are elements of \mathbb{R}^2 , \mathbf{b} is an element of \mathbb{R}^4 and \mathbf{x} is an element of \mathbb{R}^n .

A key example of a vector is the **zero vector** denoted by **0**. It is the vector whose entries are all zero. For example, $\begin{bmatrix} r \\ r \end{bmatrix}$

$$\mathbf{0} = \begin{bmatrix} 0\\0 \end{bmatrix} \text{ in } \mathbb{R}^2, \quad \mathbf{0} = \begin{bmatrix} 0\\0\\0 \end{bmatrix} \text{ in } \mathbb{R}^3, \quad \mathbf{0} = \begin{bmatrix} 0\\0\\0\\0 \end{bmatrix} \text{ in } \mathbb{R}^4, \quad \text{ and } \mathbf{0} = \begin{bmatrix} 0\\0\\\vdots\\0 \end{bmatrix} \text{ in } \mathbb{R}^n.$$

The algebra of vectors: for any two vectors \mathbf{u} and \mathbf{v} in \mathbb{R}^n , we say

- \mathbf{u} and \mathbf{v} are equal, written $\mathbf{u} = \mathbf{v}$, if their entries are equal;
- the sum of \mathbf{u} and \mathbf{v} is the vector whose entries are the sum of the entries of \mathbf{u} and \mathbf{v} , written $\mathbf{u} + \mathbf{v}$;
- and the scalar multiple of \mathbf{u} by a scalar c (a real number) is the vector $c\mathbf{u}$ obtaining by multiplying each entry of \mathbf{u} by c.

Algebraic properties of (vectors in) \mathbb{R}^n

For all $\mathbf{u}, \mathbf{v}, \mathbf{w} \in \mathbb{R}^{n}$ and all scalars *c* and *d*, the following properties hold:

1. $\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$	5. $c(\mathbf{u} + \mathbf{v}) = \mathbf{c}\mathbf{u} + \mathbf{c}\mathbf{v})$
2. $(\mathbf{u} + \mathbf{v}) + \mathbf{w} = \mathbf{u} + (\mathbf{v} + \mathbf{w})$	6. $(c+d)\mathbf{u} = c\mathbf{u} + d\mathbf{u}$
3. $u + 0 = 0 + u = u$	7. $c(d\mathbf{u}) = (cd)\mathbf{u}$
4. $\mathbf{u} + (-\mathbf{u}) = -\mathbf{u} + \mathbf{u} = 0$, where $-\mathbf{u}$ denotes $(-1)\mathbf{u}$	8. $1\mathbf{u} = \mathbf{u}$

Given vectors $\mathbf{v_1}, \mathbf{v_2}, \ldots, \mathbf{v_p}$ in \mathbb{R}^n and given scalars c_1, c_2, \ldots, c_p , the vector \mathbf{y} defined

$$\mathbf{y} = c_1 \mathbf{v_1} + c_2 \mathbf{v_2} + \dots + c_p \mathbf{v_p}$$

is called a **linear combination** of $\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_p$ with weights c_1, c_2, \ldots, c_p .

Fact: Vector equations and linear systems The vector equation

 $x_1\mathbf{a_1} + x_2\mathbf{a_2} + \dots + x_n\mathbf{a_n} = \mathbf{b}$

has the same solution set as the linear system with augmented matrix

 $\begin{bmatrix}a_1 & a_2 & \cdots & a_n & b\end{bmatrix}$

Notice this implies in particular that **b** is a linear combination of $\mathbf{a_1}, \mathbf{a_2}, \ldots, \mathbf{a_n}$ exactly when the corresponding system is consistent (and the solution provide the correct weights for the linear combination).

If $\mathbf{v_1}, \mathbf{v_2}, \ldots, \mathbf{v_p}$ are in \mathbb{R}^n , the set of all linear combinations of $\mathbf{v_1}, \mathbf{v_2}, \ldots, \mathbf{v_p}$ is called the **subset of** \mathbb{R}^n **spanned** (or **generated**) by $\mathbf{v_1}, \mathbf{v_2}, \ldots, \mathbf{v_p}$ or more simply, **the span of** $\mathbf{v_1}, \mathbf{v_2}, \ldots, \mathbf{v_p}$. We denote this set by Span{ $\mathbf{v_1}, \mathbf{v_2}, \ldots, \mathbf{v_p}$ }.

We represent a vector $\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$ in \mathbb{R}^n geometrically in two ways.

- First, as an arrow with initial point at the origin $(0, 0, \ldots, 0)$ and terminal point at (x_1, x_2, \ldots, x_n) .
- Secondly, as the point (x_1, x_2, \ldots, x_n) .

Parallelogram rule for addition

If **u** and **v** in \mathbb{R}^2 are represented as points in the plane, then $\mathbf{u} + \mathbf{v}$ corresponds to the fourth vortex of the parallelogram whose other vertices are $\mathbf{u}, \mathbf{0}$ and \mathbf{v} .

For example, in \mathbb{R}^2 , we sketch the sum of $\mathbf{u} = \begin{bmatrix} 3 \\ 1 \end{bmatrix}$ and $\mathbf{v} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$

Visualizing scalar multiples

The set of all scalar multiples of a vector \mathbf{u} in \mathbb{R}^n is the collection of vectors on the line through $\mathbf{0}$ and \mathbf{u} .

For example, in \mathbb{R}^2 , we sketch the scalar multiples of $\mathbf{u} = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$:

